Abstract:Mixture-of-Experts (MoE) architectures are evolving towards finer granularity to improve parameter efficiency. However, existing MoE designs face an inherent trade-off between the granularity of expert specialization and hardware execution efficiency. We propose OmniMoE, a system-algorithm co-designed framework that pushes expert granularity to its logical extreme. OmniMoE introduces vector-level Atomic Experts, enabling scalable routing and execution within a single MoE layer, while retaining a shared dense MLP branch for general-purpose processing. Although this atomic design maximizes capacity, it poses severe challenges for routing complexity and memory access. To address these, OmniMoE adopts a system-algorithm co-design: (i) a Cartesian Product Router that decomposes the massive index space to reduce routing complexity from O(N) to O(sqrt(N)); and (ii) Expert-Centric Scheduling that inverts the execution order to turn scattered, memory-bound lookups into efficient dense matrix operations. Validated on seven benchmarks, OmniMoE (with 1.7B active parameters) achieves 50.9% zero-shot accuracy across seven benchmarks, outperforming coarse-grained (e.g., DeepSeekMoE) and fine-grained (e.g., PEER) baselines. Crucially, OmniMoE reduces inference latency from 73ms to 6.7ms (a 10.9-fold speedup) compared to PEER, demonstrating that massive-scale fine-grained MoE can be fast and accurate. Our code is open-sourced at https://github.com/flash-algo/omni-moe.
Abstract:Extreme weather can substantially change electricity consumption behavior, causing load curves to exhibit sharp spikes and pronounced volatility. If forecasts are inaccurate during those periods, power systems are more likely to face supply shortfalls or localized overloads, forcing emergency actions such as load shedding and increasing the risk of service disruptions and public-safety impacts. This problem is inherently difficult because extreme events can trigger abrupt regime shifts in load patterns, while relevant extreme samples are rare and irregular, making reliable learning and calibration challenging. We propose AdaCNP, a probabilistic forecasting model for data-scarce condition. AdaCNP learns similarity in a shared embedding space. For each target data, it evaluates how relevant each historical context segment is to the current condition and reweights the context information accordingly. This design highlights the most informative historical evidence even when extreme samples are rare. It enables few-shot adaptation to previously unseen extreme patterns. AdaCNP also produces predictive distributions for risk-aware decision-making without expensive fine-tuning on the target domain. We evaluate AdaCNP on real-world power-system load data and compare it against a range of representative baselines. The results show that AdaCNP is more robust during extreme periods, reducing the mean squared error by 22\% relative to the strongest baseline while achieving the lowest negative log-likelihood, indicating more reliable probabilistic outputs. These findings suggest that AdaCNP can effectively mitigate the combined impact of abrupt distribution shifts and scarce extreme samples, providing a more trustworthy forecasting for resilient power system operation under extreme events.
Abstract:Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
Abstract:Villalobos et al. [2024] predict that publicly available human text will be exhausted within the next decade. Thus, improving models without access to ground-truth labels becomes increasingly important. We propose a label-free post-processing framework that improves a strong but miscalibrated model using a weaker yet better-calibrated reference. Our framework guarantees a strict performance improvement under any proper loss. Our approach is based on a characterization of when strict improvement is possible: when the strong and reference models are not mutually calibrated. We formalize this condition, connect it to arbitrage and no-trade results from economics, and develop an efficient Bregman projection algorithm that guarantees worst-case loss reduction without labels. Experiments on representative LLMs across varying scales demonstrate that our label-free method significantly reduces proper losses and calibration errors, achieving performance competitive with supervised baselines.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Memory overload is a common form of resource exhaustion in cloud data warehouses. When database queries fail due to memory overload, it not only wastes critical resources such as CPU time but also disrupts the execution of core business processes, as memory-overloading (MO) queries are typically part of complex workflows. If such queries are identified in advance and scheduled to memory-rich serverless clusters, it can prevent resource wastage and query execution failure. Therefore, cloud data warehouses desire an admission control framework with high prediction precision, interpretability, efficiency, and adaptability to effectively identify MO queries. However, existing admission control frameworks primarily focus on scenarios like SLA satisfaction and resource isolation, with limited precision in identifying MO queries. Moreover, there is a lack of publicly available MO-labeled datasets with workloads for training and benchmarking. To tackle these challenges, we propose SafeLoad, the first query admission control framework specifically designed to identify MO queries. Alongside, we release SafeBench, an open-source, industrial-scale benchmark for this task, which includes 150 million real queries. SafeLoad first filters out memory-safe queries using the interpretable discriminative rule. It then applies a hybrid architecture that integrates both a global model and cluster-level models, supplemented by a misprediction correction module to identify MO queries. Additionally, a self-tuning quota management mechanism dynamically adjusts prediction quotas per cluster to improve precision. Experimental results show that SafeLoad achieves state-of-the-art prediction performance with low online and offline time overhead. Specifically, SafeLoad improves precision by up to 66% over the best baseline and reduces wasted CPU time by up to 8.09x compared to scenarios without SafeLoad.
Abstract:This is the system card published alongside the OpenAI GPT-5 launch, August 2025. GPT-5 is a unified system with a smart and fast model that answers most questions, a deeper reasoning model for harder problems, and a real-time router that quickly decides which model to use based on conversation type, complexity, tool needs, and explicit intent (for example, if you say 'think hard about this' in the prompt). The router is continuously trained on real signals, including when users switch models, preference rates for responses, and measured correctness, improving over time. Once usage limits are reached, a mini version of each model handles remaining queries. This system card focuses primarily on gpt-5-thinking and gpt-5-main, while evaluations for other models are available in the appendix. The GPT-5 system not only outperforms previous models on benchmarks and answers questions more quickly, but -- more importantly -- is more useful for real-world queries. We've made significant advances in reducing hallucinations, improving instruction following, and minimizing sycophancy, and have leveled up GPT-5's performance in three of ChatGPT's most common uses: writing, coding, and health. All of the GPT-5 models additionally feature safe-completions, our latest approach to safety training to prevent disallowed content. Similarly to ChatGPT agent, we have decided to treat gpt-5-thinking as High capability in the Biological and Chemical domain under our Preparedness Framework, activating the associated safeguards. While we do not have definitive evidence that this model could meaningfully help a novice to create severe biological harm -- our defined threshold for High capability -- we have chosen to take a precautionary approach.
Abstract:Biological foundation models (BioFMs), pretrained on large-scale biological sequences, have recently shown strong potential in providing meaningful representations for diverse downstream bioinformatics tasks. However, such models often rely on millions to billions of training sequences and billions of parameters, resulting in prohibitive computational costs and significant barriers to reproducibility and accessibility, particularly for academic labs. To address these challenges, we investigate the feasibility of data pruning for BioFM pretraining and propose a post-hoc influence-guided data pruning framework tailored to biological domains. Our approach introduces a subset-based self-influence formulation that enables efficient estimation of sample importance at low computational cost, and builds upon it two simple yet effective selection strategies, namely Top-k Influence (Top I) and Coverage-Centric Influence (CCI). We empirically validate our method on two representative BioFMs, RNA-FM and ESM-C. For RNA, our framework consistently outperforms random selection baselines under an extreme pruning rate of over 99 percent, demonstrating its effectiveness. Furthermore, we show the generalizability of our framework on protein-related tasks using ESM-C. In particular, our coreset even outperforms random subsets that are ten times larger in both RNA and protein settings, revealing substantial redundancy in biological sequence datasets. These findings underscore the potential of influence-guided data pruning to substantially reduce the computational cost of BioFM pretraining, paving the way for more efficient, accessible, and sustainable biological AI research.
Abstract:Self-improvement is a critical capability for large language models and other intelligent systems, enabling them to refine their behavior and internal consistency without external supervision. Despite its importance, prior approaches largely rely on empirical heuristics and lack formal guarantees. In this paper, we propose a principled framework for self-improvement based on the concept of \emph{coherence}, which requires that a model's outputs remain consistent under task-preserving transformations of the input. We formalize this concept using projection-based mechanisms that update a baseline model to be coherent while remaining as close as possible to its original behavior. We provide rigorous theoretical guarantees that these mechanisms achieve \emph{monotonic improvement}, measured by a reduction in expected Bregman divergence. Our analysis is comprehensive, covering both \emph{direct} and \emph{two-step} projection methods, and robustly extends these guarantees to non-realizable settings, empirical (finite-sample) distributions, and relaxed coherence constraints. Furthermore, we establish a general \emph{characterization theorem}, showing that any mechanism with similar provable improvement guarantees must inherently conform to a coherence-based structure. This culminates in rigidity results under the demand for universal improvement, establishing coherence as a fundamental and, in a formal sense, necessary principle for provable self-improvement.




Abstract:While reinforcement learning (RL) can empower autonomous agents by enabling self-improvement through interaction, its practical adoption remains challenging due to costly rollouts, limited task diversity, unreliable reward signals, and infrastructure complexity, all of which obstruct the collection of scalable experience data. To address these challenges, we introduce DreamGym, the first unified framework designed to synthesize diverse experiences with scalability in mind to enable effective online RL training for autonomous agents. Rather than relying on expensive real-environment rollouts, DreamGym distills environment dynamics into a reasoning-based experience model that derives consistent state transitions and feedback signals through step-by-step reasoning, enabling scalable agent rollout collection for RL. To improve the stability and quality of transitions, DreamGym leverages an experience replay buffer initialized with offline real-world data and continuously enriched with fresh interactions to actively support agent training. To improve knowledge acquisition, DreamGym adaptively generates new tasks that challenge the current agent policy, enabling more effective online curriculum learning. Experiments across diverse environments and agent backbones demonstrate that DreamGym substantially improves RL training, both in fully synthetic settings and in sim-to-real transfer scenarios. On non-RL-ready tasks like WebArena, DreamGym outperforms all baselines by over 30%. And in RL-ready but costly settings, it matches GRPO and PPO performance using only synthetic interactions. When transferring a policy trained purely on synthetic experiences to real-environment RL, DreamGym yields significant additional performance gains while requiring far fewer real-world interactions, providing a scalable warm-start strategy for general-purpose RL.